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Abstract – Fractal networks are ubiquitous in nature, ranging from river networks to vascular
networks. The ultimate goal of exploring these fractal networked systems lies in controlling the
dynamical processes that take place on them. We offer analytical results to exactly understand
our ability to control the dynamics of regular fractal networks in terms of identifying the min-
imum number of driver nodes that are required to achieve full control. According to the exact
controllability theory, the controllability of an undirected network is completely determined by
the eigenvalue spectrum of the coupling matrix that captures the network structure. The self-
similarity in the fractal networks allows us to solve exactly the eigenvalue spectrum from the
growth unit and the steps of the iterations, enabling an analytical quantification of the controlla-
bility of the fractal networks via the eigenvalue spectrum. We validate our exact analytical results
in three typical regular fractal networks. Our results have implications for the control of many
real networked systems that have fractal characteristics.

Copyright c© EPLA, 2014

Introduction. – Since it was introduced by Mandel-
brot in 1975 [1], the term “fractal” has become the finger-
print of nature. Fractal geometry and patterns have been
found to be ubiquitous, such as coastlines, trees, frost crys-
tals, Romanesco broccoli, and more. The development of
computer science offers a number of tools for exploring
fractal behaviors numerically and mathematically [1,2].
Based on the underlying self-similarity, a variety of it-
eration models have been proposed to reproduce fractal
properties [3–12]. An interesting finding in nonlinear dy-
namics is that chaotic attractors are often accompanied by
fractal structures [13]. In the field of complex networks,
fractal properties and self-similarities are shared by many
network systems [9–12,14,15], which motivates us to ex-
plore how the fractal structure affects the dynamical pro-
cesses that take place on complex networks. Prototypical
approaches include transportation and diffusion [16–19].
Although much effort has been dedicated to exploring the
dynamics of fractal networks, how to control the collective
dynamics, the ultimate goal of studying them in contem-
porary science, has not yet been addressed. The recently
developed controllability theory of complex networks pro-
vides a general framework to understand our ability to

(a)E-mail: zyuan@mnnu.edu.cn

control fractal networks and to achieve full control of the
networks [20–25].

In this paper, we explore the controllability of several
canonical regular fractal networks that have been con-
structed from a self-similar iteration process, where the
controllability is defined by the fraction of the minimum
number of driver nodes that must be controlled to fully
steer a networked system [20]. According to the exact con-
trollability theory [25], the controllability of regular frac-
tal networks is solely determined by the eigenvalues of the
coupling matrix that characterizes the connections among
the nodes. The key thus lies in solving the eigenvalues
of the coupling network and linking the eigenvalue spec-
trum to the controllability, which however is challenging
for arbitrary networks but can be exactly accomplished
in regular fractal networks. In particular, regular frac-
tal networks with identical weight of edges enable explicit
closed-form solutions of the eigenvalue spectrum not only
in terms of a thermodynamic limit but also in terms of
a finite size. The advantage of regular fractals allows
us to offer exact analytical results on the controllabil-
ity without any approximation. Interestingly, we find
that controllability quantified by the fraction of driver
nodes can be either an increasing or decreasing function
of the network size, depending on the iteration rule of the
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fractals. Specifically, for a regular fractal network that
has completely identical node degrees, it guarantees the
absence of degree-degree correlations, and the density of
the triangular structures is not altered with the network
size; the controllability still decreases remarkably along
with the iteration process, which implies that there ex-
ists some unknown structural properties (in addition to
the node degrees [20] and clustering) that play important
roles in the controllability of the complex networks. The
controllability of regular fractals of any finite size as well
as the evolution of controllability along with the growth
of the network can be exactly predicted by our theoretical
results. Such an exact theoretical prediction of the con-
trollability of any complex network without an approxi-
mation has not been achieved prior to our approach in
the literature. Our results have potential applications
in controlling real networked systems with fractal struc-
tures, such as river networks [26,27] and many biological
networks [28–30].

Exact controllability theory. – Consider a con-
trolled network that has N nodes, as described by the
following linear ordinary differential equations [20,25]:

ẋ = Ax+Bu, (1)

where the vector x = (x1, · · · , xN )T stands for the states
of N nodes, A ∈ RN×N denotes the coupling matrix
of a complex network, u is the vector of m controllers:
u = (u1, u2, · · · , um)T, and B is the N ×m input matrix.
Note that here each node is captured by single state, say,
one-dimensional nodal dynamics.
According to ref. [20], the controllability of the complex

networked system (1) is determined in terms of finding a
matrix B associated with the minimum number of con-
trollers that assure full control of system (1). Such defini-
tion is slightly different from that in the classical control
theory: system (1) is said to be controllable if there exists a
controller u for a given matrix B that can drive the system
state x from any initial state to any target state. In con-
trast, here we assume that the matrix B is not fixed and
our purpose is to devise a matrix B corresponding to the
minimum number of input signals imposed on a minimum
set of driver nodes. The controllability of the complex net-
worked system (1) is then defined by the fraction of driver
nodes in the sense that a complex network is said to be
more controllable if a smaller fraction of driver nodes need
to be controlled to achieve full control. In this regard, the
minimum number ND of driver nodes is the key to measure
the controllability of system (1). According to ref. [25],

ND ≡ min{rank(B)}. (2)

Although one can enumerate all configurations of matrix
B by using the Kalman rank condition [31,32] to identify
a satisfied B with the minimum rank for low-dimensional
A, it is computational prohibitive for large complex
networks. Fortunately, it has been proved that [25]

ND = max
i

{µ(λi)} (3)

based on Popov-Belevitch-Hautus rank condition [31,33]
that is equivalent to the Kalman rank condition, where
λi is the eigenvalue of matrix A and the geometric
multiplicity µ(λi) ≡ N − rank(λiIN −A). It is noted that
eq. (3) is valid for any linear coupled system (1).
For a symmetric coupling matrix that has the same ge-

ometric multiplicity and algebraic multiplicity [34], such
as a matrix of an undirected network, the controllability
of the system (1) can be simplified to [25]

ND = max
i

{δ(λi)}, (4)

where δ(λi) is the algebraic multiplicity of eigenvalue λi

and also the eigenvalue degeneracy of matrix A.
For a large sparse network, in which the number of links

scales with N in the limit of large N [35], with a small
fraction of self-loops, ND is simply determined by the rank
of the coupling matrix A [25]:

ND = max{1, N − rank(A)}, (5)

which means the eigenvalue 0 has a maximum multiplicity.
By using eqs. (3), (4) and (5), we can calculate ND of all

kinds networks corresponding to the coupling matrix A in
eq. (1), including fractal networks. Specifically, for regular
fractal networks with undirected edges and identical edge-
weight, due to the fact that matrix A is symmetric, we can
calculate ND based solely on eq. (4).
According to ref. [20], the controllability of a network is

defined by the ratio of ND to the network size N , i.e.,

nD =
ND

N
. (6)

In the following, we analytically derive ND of three types
of regular fractal networks with identical edge-weight and
consequently their controllability nD with finite and infi-
nite network size.

Modified (1, 2)-tree network. – These fractal
networks are modified from the famous (1, 2)-tree net-
works [9]. They can be constructed in the following it-
erative way on every existing edge, as follows: beginning
with two adjacent nodes, in each step, replace the edge by
a path that is 2 links long, with both endpoints of the path
being endpoints of the original edge; then, for each end-
point of the path, create m new nodes and attach them to
the endpoint [10]. Figure 1(a) shows a simple illustration
of this network. After s steps, we obtain a fractal network
Ts with the number of nodes Ns = (2m+2)s+1 and edges
Es = (2m+ 2)s.
It is obvious that the modified (1, 2)-tree network is

always sparse with Es

Ns
= (2m+2)s

(2m+2)s+1 < 1. Thus, the con-

trollability of this network is totally determined by the
degeneracy of the eigenvalue 0. In other words, for the
s-step network Ts, the minimum number of driver nodes of
Ts is ND(Ts) = max{1, δs(0)}. At this point, we calculate
exactly the degeneracy of eigenvalue 0 of the adjacency
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Fig. 1: (Colour on-line) Network model and construction in
this paper. (a) General construction of the modified (1, 2)-
tree network and two simple examples of m = 1 and m = 2
with two steps. (b) General construction of the Peano network
and two simple examples of m = 1 and m = 2 with two and
infinite steps. (c) A simple DSGs network and our modified
DSGs network for this basic DSGs with added self-loop for
each corner node.

matrix, as described in the following: let α represent the
set of nodes that belong to the s-step network Ts, and let
β be the set of nodes that are generated at the (s+ 1)-th
iteration. From the construction, the adjacency matrix of
Ts+1 has the following block form:

As+1 =

(

Aα,α Aα,β

Aβ,α Aβ,β

)

=

(

0 Aα,β

Aβ,α 0

)

=

(

0 AT
β,α

Aβ,α 0

)

.

(7)

Then, we can obtain the degeneracy of eigenvalue 0 as

δs+1(0) = Ns+1 − rank(As+1)

= Ns+1 − rank(Aβ,α)− rank(AT
β,α)

= Ns+1 − 2rank(Aβ,α)

(8)

where Aβ,α is a matrix with Ns+1 − Ns rows and Ns

columns and is written as follows:

Aβ,α =

⎛

⎜

⎜

⎜

⎝

a1,1 a1,2 · · · a1,Ns

a2,1 a2,2 · · · a2,Ns

...
...

. . .
...

aNs+1−Ns,1 aNs+1−Ns,2 · · · aNs+1−Ns,Ns

⎞

⎟

⎟

⎟

⎠

.

(9)

It has been proven that theNs columns ofAβ,α are linearly
independent [10], i.e., rank(Aβ,α) = Ns = (2m+ 2)s + 1.
Thus, δs+1(0) = Ns+1 − 2Ns = 2m(2m+ 2)s − 1, and

ND(Ts) = max{1, δs(0)} =

{

1, s = 0,

2m(2m+ 2)s−1 − 1, s ≥ 1.

(10)
The controllability nD of the modified (1, 2)-tree

network is given by

nD =
ND(Ts)

Ns

=
2m(2m+ 2)s−1 − 1

(2m+ 2)s + 1
(11)

with its thermodynamic limit

lim
s→∞

nD = lim
s→∞

2m(2m+ 2)s−1 − 1

(2m+ 2)s + 1
=

m

m+ 1
(12)

for any given m.

Peano network. – The Peano network [26,27] can also
be constructed in an iterative way, as follows: begin with
two adjacent nodes. In each step, insert a new node to
each existent edge and for each newly added node, link m

new nodes to it. After s steps, we obtain a fractal network
Ps, as shown in fig. 1(b). The edges of Ps and Ps−1 have
the relations Es = 2Es−1 + mEs−1 = (2 + m)Es−1 with
E0 = 1. In parallel, the nodes have similar relations, i.e.,
Ns = Ns−1+(m+1)Es−1 = Ns−1+(m+1)(m+2)s−1 with
N0 = 2. In other words, after s steps, we obtain the Peano
network Ps, with the number of nodes Ns = (m+ 2)s + 1
and edges Es = (m+ 2)s.
Because this Peano network is also sparse with Es

Ns
=

(m+2)s

(m+2)s+1 < 1, its controllability is then totally deter-

mined by the degeneracy of eigenvalue 0, in other words,
ND(Ps) = max{1, δs(0)}. Thus, similar to the modified
(1, 2)-tree network, we consider only the degeneracy of the
eigenvalue 0 of the adjacency matrix.
Analogous to the modified (1, 2)-tree network, let α rep-

resent the set of nodes that belong to the s-step Peano
network Ps with Ns nodes, and let β be the set of newly
added nodes that were generated at the (s + 1)-th itera-
tion with β = β1 + β2, where β1 represents the set of new

nodes inserted into the edges with N
(β1)
s = Es = Ns − 1,

and β2 represents the set of new nodes that are adjacent

to the inserted nodes with N
(β2)
s = mN

(β1)
s = m(Ns − 1).

From the construction, the adjacency matrix of Ps+1 has
the following block form:

As+1 =

⎛

⎝

Aα,α Aα,β2
Aα,β1

Aβ2,α Aβ2,β2
Aβ2,β1

Aβ1,α Aβ1,β2
Aβ1,β1

⎞

⎠

=

⎛

⎝

0 0 Aα,β1

0 0 Aβ2,β1

Aβ1,α Aβ1,β2
0

⎞

⎠

=

(

0 (Aβ1,α, Aβ1,β2
)T

(Aβ1,α, Aβ1,β2
) 0

)

.

(13)
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(Aβ1,α, Aβ1,β2
) =

⎛

⎜

⎜

⎜

⎝

a1,1 a1,2 · · · a1,Ns
1 · · · 1 0 · · · 0 · · · 0 · · · 0

a2,1 a2,2 · · · a2,Ns
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

aNs−1,1 aNs−1,2 · · · aNs−1,Ns
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎞

⎟

⎟

⎟

⎠

. (15)

Then, we can calculate the degeneracy of eigenvalue 0 as
follows:

δs+1(0) = Ns+1 − rank(As+1)

= Ns+1 − rank(Aβ1,α, Aβ1,β2
)

− rank((Aβ1,α, Aβ1,β2
)T)

= Ns+1 − 2rank(Aβ1,α, Aβ1,β2
), (14)

where (Aβ1,α, Aβ1,β2
) is a matrix with Ns − 1 rows and

Ns +m(Ns − 1) columns which can be written as

see eq. (15) above

It is obvious that the rows that correspond to the
last m(Ns − 1) columns of Aβ1,β2

are orthogo-
nal, which means that they are linearly indepen-
dent [34], i.e., rank(Aβ1,β2

) = Ns − 1 = (m + 2)s.
Following this conclusion, the whole Ns − 1 rows
are also linearly independent [34]. In other words,
rank(Aβ1,α Aβ1,β2

) = rank(Aβ1,β2
) = (m + 2)s. Thus,

δs+1(0) = m(m+ 2)s + 1 and

ND(Ps) = max{1, δs(0)} =

{

1, s = 0,

m(m+ 2)s−1 + 1, s ≥ 1.

(16)
The controllability nD of the Peano network can then

be calculated as

nD =
ND(Ps)

Ns

=
m(m+ 2)s−1 + 1

(m+ 2)s + 1
(17)

with its thermodynamic limit

lim
s→∞

nD = lim
s→∞

m(m+ 2)s−1 + 1

(m+ 2)s + 1
=

m

m+ 2
(18)

for any m.

Modified dual Sierpinski gaskets network. – This
fractal network is an extension of the dual Sierpinski gas-
kets (DSGs), which is in turn an extension of the basic
Sierpinski gaskets (SGs). Let Dd,s denote d-dimension
DSGs after s generations with d ≥ 2 and s ≥ 0. Dd,0

represents a fully connected network with d + 1 nodes.
Dd,s is iterated by Dd,s−1 as follows: combining d + 1
copies of Dd,s−1 by adding some extra edges that con-
nect corner nodes with the smallest degree d in the copies
of Dd,s−1, for example, as shown in fig. 1(c). This frac-
tal network has d + 1 corner nodes. Our modified DSGs
are basic DSGs with added self-loops for each d + 1 cor-
ner node, where each node has the same degree [11].

A simple example of our modified DSGs is also shown
in fig. 1(c). We also use Dd,s to represent our modified
DSGs without confusion. After s steps, we obtain the
modified DSGs network Dd,s with the number of nodes

Nd,s = (d+ 1)s+1 and edges Ed,s =
(d+1)s+2+(d+1)

2 , which

leads to
Ed,s

Nd,s
= (d+1)s+2+(d+1)

2(d+1)s+1 ≈ d+1
2 ; this result means

that it is also a sparse network. Thus, the controllability
of our modified DSGs network is also totally determined
by the degeneracy of the eigenvalue 0, in other words,
ND(Dd,s) = max{1, δs(0)}. Here, we need to calculate
only the multiplicity of the eigenvalue 0 in the following.

For this modified DSG network, we consider the cou-
pled system (1), in which the coupling matrix A is the
transition matrix. The off-diagnal element in matrix A is
defined as aij = 1

d+1 if the nodes i and j are adjacent,

otherwise aij = 0; for the diagnal element aii =
1

d+1 if the
node i is one of the d+ 1 corner nodes, otherwise aii = 0.
Using the decimation technique [12], it has been proven
that the degeneracy for the eigenvalue 0 has the following
relation [11]:

δs+1(0) = (d+ 1)δs(0) +
d(d+ 1)

2
(s = 0, 1, 2, · · · ) (19)

with δ0(0) = d because all of the elements of this net-
work’s transition matrix are 1

d+1 . Thus, the multiplicity
of eigenvalue 0 is

δs(0) =
d− 1

2
(d+ 1)s +

d+ 1

2
(20)

and

ND(Dd,s) = max{1, δs(0)}

=
d− 1

2
(d+ 1)s +

d+ 1

2
(s = 0, 1, 2, · · · ).

(21)

The controllability nD of our modified DSGs coupled
with the transition matrix becomes

nD =
ND(Dd,s)

Ns

=
d−1
2 (d+ 1)s + d+1

2

(d+ 1)s+1
(22)

with its thermodynamic limit

lim
s→∞

nD = lim
s→∞

d−1
2 (d+ 1)s + d+1

2

(d+ 1)s+1
=

d− 1

2(d+ 1)
(23)

for any given m.
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Fig. 2: (Colour on-line) Controllability measure nD as a function of iteration step s for (a) modified (1, 2)-tree networks,
(b) Peano networks and (c) modified DSGs networks, respectively. MMT denotes the results by numerically calculating eq. (4),
AR denotes the analytical results predicted by eqs. (11), (17) and (22) for the three types of networks, respectively, and Limit
denotes the thermodynamic limit predicted by eqs. (12), (18) and (23) for the three networks, respectively.

Numerical test and discussion. – We numerically
test the analytical results of the controllability nD of (1, 2)-
tree Peano and modified DSGs networks, respectively.
As shown in fig. 2, we see that the analytical results ob-
tained from eqs. (11), (17) and (22), respectively, for the
three types of fractal networks are in exactly agreement
with numerical calculations based on the MMT theory
(eq. (4)). For the minimum number of driver nodes ND,
the three types of networks share a common feature: ND

increases exponentially as the iteration step s increases, as
reflected in eqs. (10), (16) and (21). In other words, ND

increases very fast with the growth of the network. How-
ever, the controllability measure nD is limited to a con-
stant lower than 1, as predicted by eqs. (12), (18) and (23)
for the three networks, respectively. This seemingly coun-
terintuitive finding is due to the fact that the network size
is also exponentially increases with the iteration step s, as
can be found in the denominator of eqs. (11), (17) and (22)
for the three networks, respectively, accounting for the ex-
istent of the constant thermodynamic limits and the fast
approaching to the limit as s increases, as shown in fig. 2.

Apart from the common characteristic of nD in the
fractal networks, the results of the modified DSGs raise an
interesting question that pertains to the structural effect
on the network controllability. In the modified DSGs, all
of the degrees of the nodes are fixed to be d + 1, regard-
less of the iteration in the self-similarly growth, which
also ensures the absence of degree-degree correlation. The
density of the triangular structure in the DSGs is invari-
ant as well. However, the controllability nD decreases
dramatically, which suggests that there are some unknown
structural properties that play significant roles in the con-
trollability other than node degrees, degree-degree corre-
lation and triangular structure. This conjecture raises the
need to design subtle schemes to uncover the impact of
each structural property on the controllability by screen-
ing the effects of others.

Conclusions. – We have demonstrated that the con-
trollability of fractal networks that consist of a broad class
of complex networks can be exactly predicted by employ-
ing the exact controllability theory. In particular, for
sparse fractal networks, according to the exact controlla-
bility theory, the controllability is completely determined
by the multiplicity of the zero eigenvalue, which can be
exactly derived because of the self-similarity of the net-
work. Three prototypical regular fractal networks have
been explored to validate our analytical results, includ-
ing the modified (1, 2)-tree network, the Peano network
and the modified dual Sierpinski gaskets. Our analytical
results are in exact agreement with those of immediately
using the exact controllability theory to compute the max-
imum algebraic multiplicity of the coupling matrix. Our
analytical results are valid not only for finite network sizes
but also for the thermodynamic limit. Although we focus
on the controllability of fractal networks, our work offers a
general paradigm to explore the controllability of general
networks by bridging the eigenvalue spectrum and control-
lability theory, opening new avenues to achieve the control
of real systems.
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